J. Adv. Math. Stud.

Vol. 18(2025), No. 1, 34-46

http://journal.fairpartners.ro

ON PREY-PREDATOR MODEL WITH LOGISTIC GROWTH RATE AND TRIANGULAR HERD SHAPE IN PREYS

TITLI MAITI AND AVIJIT SARKAR

ABSTRACT. The object of the present article is to study prey-predator model with preys having logistic growth rate and moving in herd of triangular shapes. Stability and bifurcation analysis are provided with illustrating numerical simulations.

REFERENCES

- [1] V. Ajraldi, M. Pittarino and E. Venturino: Modelling Herd behavior in population system, Nonlinear Anal. Real World Appl., 12(2011), 2319-2338.
- [2] S. Biswas, D. Pal, G.S. Mahapatra and G.P. Samanta: Dynamics of a prey-predator system with herd behaviour in both and strong allee effect in prey, Biophysics, 55(2020), 826-835.
- [3] P.A. Braza: Predator-prey dynamics with square root functional response, Nonlinear Anal. Real World Appl., **13**(2012), 1837-1843.
- [4] C. Cosner and D.L. De Angelis: Effects of spatial grouping on functional response of predator, Theoretical Population Biology, **56**(1999), 65-75.
- [5] S. Debnath, P. Majumdar, S. Sarkar and U. Ghosh: Complex dynamical behaviour of a delayed preypredator model with square root functional response in presence of fear in the prey, Int. J. Modelling Simulat., 43(2023), No. 5, 612-637.
- [6] Y. Kuang and E. Beretta: Global qualitative analysis of a ratio dependent predator-prey system, J. Math. Biol., 36(1998), 389-406.
- [7] B. Mondal, S. Roy, U. Ghosh and P.K. Tiwari: A systematic study of autonomous and non-autonomous predator prey models for the combined effects of fear, refuge, cooperation and harvesting, Eur. Phys. J. Plus, 137(2022), Art. No. 724, 23 pages.
- [8] P. Saha, B. Mondal and U. Ghosh: Dynamical behaviors of an epidemic and structural treatment in deterministic and stochastic environments, Chaos Solitons Fractals, 174(2023), Art. No. 113775.
- [9] S. Wiggins, W. Stephen and G. Martin: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, New York, Springer, 2003 (TAM 2).

University of Kalyani Department of Mathematics

Kalyani 741235, West Bengal, India

 $Email\ address: {\tt titli96.rahara@gmail.com}$

University of Kalyani Department of Mathematics

Kalyani 741235, West Bengal, India Email address: avjaj@yahoo.co.in

Received: August 14, 2024. Revised: December 02, 2024.

2020 Mathematics Subject Classification: 92B05, 93E15, 60H10, 34E10.

Key words and phrases: Prey-predator interactions, stability, Hopf bifurcation, herd behavior, herd boundary.