J. Adv. Math. Stud.

Vol. 16(2023), No. 4, 395-407

http://journal.fairpartners.ro

NUMERICAL SIMULATION OF NON-HOMOGENEOUS BUCKMASTER EQUATION USING A HYBRID NUMERICAL TECHNIQUE

NIDHI PRABHAKAR AND SEEMA SHARMA

ABSTRACT. This paper employs a hybrid numerical technique based on uniform Haar wavelets and θ -weighted scheme for numerical solution of non-homogeneous Buckmaster equation. In the solution process, after applying θ -weighted scheme to Buckmaster equation, the time derivative is approximated by the forward difference and then nonlinear terms in this equation are linearized by Taylor series expansion. Thereafter, Haar wavelet collocation method has been employed to solve the resulting ordinary differential equation. To verify the competence of the present technique to solve Buckmaster equation, some test problems have been solved and the present results have been compared with the exact results. It can be seen from the numerical simulation that the computed solutions are in excellent agreement with the exact solutions for very small number of collocation points.

REFERENCES

- [1] M. Yourdkhany, M. Nadjafikhah and M. Toomanian: Lie symmetry analysis, conservation laws and some exact solutions of the time-fractional Buckmaster equation, Int. J. Geom. Methods Mod. Phys., 17(2020), No. 3, 1-21.
- [2] I. Celik: Haar wavelet method for solving generalized Burgers-Huxley equation, Arab J. Math. Sci., 18(2012), No. 1, 25-37.
- [3] T.A. Nofal: Simple equation method for nonlinear partial differential equations and its applications, J. Egyptian Math. Soc., 24(2016), No. 2, 204-209.
- [4] R. Singh, G. Singh and M. Singh: Numerical algorithm for solution of the system of Emden-Fowler type Equations, Int. J. Appl. Comput. Math., 7(2021), No. 4, 1-20.
- [5] M. Tamsir, V.K. Srivastava and R. Jiwari: An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers equation, Appl. Math. Comput., 290(2016), 111-124.
- [6] H. Wu, J. Li and Q. Wang: Exact wave solutions for a class of single-species model of population dynamics, Int. J. Dyn. Syst. Differ. Equ., 7(2017), No. 1, 82-93.
- [7] A. Rayal and S.R. Verma: Two-dimensional Gegenbauer wavelets for the numerical solution of tempered fractional model of the nonlinear Klein-Gordon equation, Appl. Numer. Math., 174(2022), 191-220.
- [8] E.A. Hussain and Z.M. Alwan: The finite volume method for solving Buckmaster's equation, Fisher's equation and Sine Gordon's equation for PDE's, Int. Math. Forum, 8(2013), No. 13, 599-617.
- [9] M. Chanthrasuwan, N.A.M. Asri, N.N.A. Hamid, A.A. Majid and A. Azmi: Solving Buckmaster equation using cubic B-Spline and cubic trigonometric B-spline collocation methods, in: Proc. of the 24th National Symposium on Mathematical Sciences, Malaysia, AIP Conf. Proc., 1870(2017), No. 1, Article ID 040027.
- [10] G.W. Jang, Y.Y. Kim and K.K. Choi: Remesh-free shape optimization using the wavelet-Galerkin method, Int. J. Solids Struct., 41(2004), No. 22-23, 6465-6483.

Received: April 26, 2023. Revised: August 07, 2023.

2010 Mathematics Subject Classification: 35K61, 65N35.

 $Key\ words\ and\ phrases$: Haar wavelets, linearization, Taylor series expansion, θ -weighted scheme.

- [11] Y. Liu, Y. Liu and Z. Cen: Daubechies wavelet meshless method for 2-D elastic problems, Tsinghua Sci. Tech., 13(2008), No. 5, 605-608.
- [12] C.H. Hsiao: Haar wavelet approach to linear stiff systems, Math. Comput. Simulation, 64(2004), No. 5, 561-567.
- [13] L.A. Diaz, M.T. Martin and V. Vampa: Daubechies wavelet beam and plate finite elements, Finite Elem. Anal. Des., 45(2009), No. 3, 200-209.
- [14] U. Lepik: Numerical solution of differential equations using Haar wavelets, Math. Comput. Simulation, 68(2005), No. 2, 127-143.
- [15] U. Lepik: Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. Comput., 185(2007), No. 1, 695-704.
- [16] U. Lepik: Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl., 61(2011), No. 7, 1873-1879.
- [17] S.U. Islam, I. Aziz and B. Sarler: The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets, Math. Comput. Modelling, 52(2010), No. 9-10, 1577-1590.
- [18] G. Hariharan: Haar wavelet method for solving the Klein-Gordon and the Sine-Gordon equations, Int. J. Nonlinear Sci., 11(2011), No. 2, 180-189.
- [19] R. Jiwari: A Haar wavelet quasilinearization approach for numerical simulation of Burgers equation, Comput. Phys. Commun., 183(2012), No. 11, 2413-2423.
- [20] Z. Shi, Y.Y. Cao and Q.J. Chen: Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method, Appl. Math. Model., 36(2012), No. 11, 5143-5161.
- [21] O. Oruc, F. Bulut and A. Esen: A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers equation, J. Math. Chem., 53(2015), 1592-1607.
- [22] I. Aziz and R. Amin: Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet, Appl. Math. Model., 40(2016), No. 23, 10286-10299.
- [23] S. Foadian, R. Pourgholi, S.H. Tabasi and J. Damirchi: The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets, Int. J. Comput. Math., 96(2017), No. 1, 105-125.
- [24] M. Ahsan, I. Ahmad, M. Ahmad and I. Hussian: A numerical Haar wavelet-finite difference hybrid method for linear and non-linear Schrödinger equation, Math. Comput. Simulation, 165(2019), 13-25.
- [25] R. Singh, V. Guleria and M. Singh: Haar wavelet quasilinearization method for numerical solution of EmdenFowler type equations, Math. Comput. Simulation, 174(2020), 123-133.
- [26] M. Ahsan, S. Lin, M. Ahmad, M. Nisar, I. Ahmad, H. Ahmed and X. Liu: A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation, Open Phys., 19(2021), No. 1, 722-734.
- [27] S.S. Ray: On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation, Appl. Math. Comput., 218(2012), No. 9, 5239-5248.

Gurukul Kangri (Deemed to be University) Haridwar Department of Mathematics and Statistics Haridwar, Uttarakhand-249404, India E-mail address: rs.nidhiprabhakar@gkv.ac.in

Gurukul Kangri (Deemed to be University) Haridwar Department of Mathematics and Statistics Haridwar, Uttarakhand-249404, India E-mail address: seema@gkv.ac.in